Stochastic variational integrators
نویسندگان
چکیده
This paper presents a continuous and discrete Lagrangian theory for stochastic Hamiltonian systems on manifolds, akin to the Ornstein–Uhlenbeck theory of Brownian motion in a force field. The main result is to derive governing SDEs for such systems from a critical point of a stochastic action. Using this result, the paper derives Langevin-type equations for constrained mechanical systems and implements a stochastic analogue of Lagrangian reduction. These are easy consequences of the fact that the stochastic action is intrinsically defined. Stochastic variational integrators (SVIs) are developed using a discrete variational principle. The paper shows that the discrete flow of an SVI is almost surely symplectic and in the presence of symmetry almost surely momentum-map preserving. A first-order mean-squared convergent SVI for mechanical systems on Lie groups is introduced. As an application of the theory, SVIs are exhibited for multiple, randomly forced and torqued rigid bodies interacting via a potential.
منابع مشابه
Stochastic Variational Partitioned Runge-Kutta Integrators for Constrained Systems
Stochastic variational integrators for constrained, stochastic mechanical systems are developed in this paper. The main results of the paper are twofold: an equivalence is established between a stochastic Hamilton-Pontryagin (HP) principle in generalized coordinates and constrained coordinates via Lagrange multipliers, and variational partitioned Runge-Kutta (VPRK) integrators are extended to t...
متن کاملLong-Run Behavior of Variational Integrators in the Stochastic Context
This paper presents a Lie-Trotter splitting for inertial Langevin equations (Geometric Langevin Algorithm) and analyzes its long-time statistical properties.The splitting is defined as a composition of a variational integrator with an Ornstein-Uhlenbeck flow. Assuming the exact solution and the splitting are geometrically ergodic, the paper proves the discrete invariant measure of the splitting...
متن کامل. N A ] 1 8 A ug 2 00 5 GENERALIZED GALERKIN VARIATIONAL INTEGRATORS
Abstract. We introduce generalized Galerkin variational integrators, which are a natural generalization of discrete variational mechanics, whereby the discrete action, as opposed to the discrete Lagrangian, is the fundamental object. This is achieved by approximating the action integral with appropriate choices of a finite-dimensional function space that approximate sections of the configuratio...
متن کاملSpectral-collocation variational integrators
Spectral methods are a popular choice for constructing numerical approximations for smooth problems, as they can achieve geometric rates of convergence and have a relatively small memory footprint. In this paper, we introduce a general framework to convert a spectral-collocation method into a shootingbased variational integrator for Hamiltonian systems. We also compare the proposed spectral-col...
متن کاملLong-Run Accuracy of Variational Integrators in the Stochastic Context
This paper presents a Lie–Trotter splitting for inertial Langevin equations (geometric Langevin algorithm) and analyzes its long-time statistical properties. The splitting is defined as a composition of a variational integrator with an Ornstein–Uhlenbeck flow. Assuming that the exact solution and the splitting are geometrically ergodic, the paper proves the discrete invariant measure of the spl...
متن کامل